
CS131, Spring19 – Discussion 1B

Week 6 (05/10/19)

Administrations

1. TA: Wenhao Zhang (wenhaoz@cs.ucla.edu)
2. Office hour:

• Time: 9:30am ~ 11:30am, Monday
• Location: 3rd floor, common area in Eng VI

3. Class Announcements

• All TAs slides are under resources tab on Piazza
• HW3 dued on 05/06
• HW4 dues on 05/14 (This coming Tuesday)
• Midterm is still being graded
• Please dont copy & paste code from stackoverflow or other sources.

4. Today’s agenda

• Prolog basics
• Finite domain solver
• Cut!
• HW4 walkthrough

Prolog basics

Declarative programming

• Describing what we want to achieve, not how to do it.
• Examples: SQL, Prolog, Regular expressions

Prolog overview

• Logic programming language
• Particularly suited to programs that involve symbolic or non-numeric

computation. For this reason it is a frequently used language in Artificial
Intelligence where manipulation of symbols and inference about them is a
common task.

• Programs defined using Facts, Rules, and Queries

1

Install Prolog

We’ll be using GNU Prolog, or GProlog. Make sure you’re using this and not
SWI-Prolog. The download link is here You can also run it in SEASnet servers
with command gprolog.

How to run prolog code

Prolog consists of a series of facts and rules. These facts and rules are in a seper-
ate file, e.g. myrules.pl. A program is run by presenting some query and seeing
if this can be proved against these known rules and facts. In interactive Prolog
environment, you consult the rule file: [myrules]. or consult('myrules')..
After that, you can run queries in the interactive environment.

Simple facts

In Prolog we can make some statements by using facts. Facts either consist of
a particular item or a relation between items. Facts defines what is true
in our knowledge base. The inference process is based on closed world
assumption. It states that a statement that is true in the knowledge base is
also known to be true. Conversely, what is not currently known to be true in
our knowledge base is false.

Syntax:

Facts should always begin with a lowercase letter and end with a period.

For example,

/*facts in our knowledge base*/
sunny.
raining.

/*query the knowledge base*/
?- sunny.

yes

?- is the Prolog prompt. To this query, Prolog will answer yes. sunny is true
because (from above) Prolog matches it in its database of facts.

Question: what’s the output of this following query?

?- foggy

/*answer is*/
no

2

http://www.gprolog.org

Facts with arguments

More complicated facts consist of a relation and the items that this refers to.
These items are called arguments. Facts can have arbitrary number of arguments
from zero upwards. A general model is shown below:

relation(<argument1>,<argument2>,....,<argumentN>).

Relation names must begin with a lowercase letter, e.g.

likes(john,mary).

The above fact says that a relationship likes links john and mary. This fact may
be read as either john likes mary or mary likes john.

Look at a more complicated example,

/*facts in our knowledge base*/
eats(fred,oranges). /* "Fred eats oranges" */

eats(tony,apples). /* "Tony eats apples" */

eats(john,grapefruit). /* "John eats grapefruit" */

/*query the knowledge base*/
?- eats(fred,oranges). /* does this match anything in the database? */

yes

?- eats(mike,apples). /* how about this query, does mike eat apples */

no

Variables and unification

Let’s say we have this fact in our knowledge base,

eats(fred,oranges).

We would like to ask the following question, “what does fred eat?”. Something
like, ?- eats(fred, what). But this does not work. This is because what is a
fact/constant and it doesn’t match with oranges. Hence, we need the help of
variables here.

Variables are distinguished by starting with a capital letter.

X. /* a capital letter */
VaRiAbLe. /* a word - it be made up or either case of letters */

Back to our eats(fred, oranges) knowledge base, let’s query it in this way,

3

?- eats(fred, What).

What = orange /*this is unification*/

yes

The process of matching items with variables is known as unification.

If we have more than one facts,

/*facts*/
eats(fred, oranges).
eats(mike, apple).
eats(lisa, banana).

/*query*/
?- eats(X,Y).

X = fred
Y = oranges ? .
/* Action (; for next solution, a for all solutions, RET to stop) ? */

Rules

Rules allow us to make conditional statements about our world. Each rule can
have several variations, called clauses. These clauses give us different choices
about how to perform inference about our world. Let’s take an example to make
things clearer. Consider the following statement,

“All men are mortal”

We can express this as the following Prolog rule,

mortal(X) :-
human(X).

the clause can be read in two ways (called either a declarative or a procedural
interpretation). The declarative interpretation is “For a given X, X is mortal if
X is human.” The procedural interpretation is “To prove the main goal that X
is mortal, prove the subgoal that X is human.”

mortal(X) :-
human(X).

human(socrates).

/*query the rule*/
?- mortal(socrates).

4

yes

Why was this? Well in order to solve the query ?- mortal(socrates)., we used the
rule we saw previously. This said that in order to prove someone mortal, we had
to prove them to be human. Thus from the goal Prolog generates the subgoal of
showing human(socrates). When our subgoal succeeds, our overgoal succeeds
automatically.

We can also use variables within queries. For example, we might wish to see if
there is somebody who is mortal. This is done by the following line.

?- mortal(P).

P = socrates

yes

This means that Prolog was able to prove the goal by binding the variable P to
socrates. This was done by again proving someone was mortal by proving the
subgoal that they were human. Prolog thus asked if there was any P that was
human. This matches against the clause human(socrates) thereby binding P to
socrates. This binding is then passed back to the parent goal, and the results in
the printout we saw above.

We can create more complicated logic using AND (,) and OR (;) logic connectors.

/* facts and rules*/
fun(X) :-

red(X),
car(X).

fun(X) :-
blue(X),
bike(X).

car(vw_beatle).
car(ford_escort).
bike(harley_davidson).
red(vw_beatle).
red(ford_escort).
blue(harley_davidson).

/*query the knowledge base*/
?- fun(harley_davidson).

yes

?- fun(What).

5

What=vw_beatle

yes

Let’s see how Prolog deals with this query. Firstly we will try the first clause of
fun. This results in us trying the goal red(What). This succeeds matching the
first clause of red with the binding What=vw_beatle. Now we attempt the goal
car(vw_beatle). This matches the first clause of car, and, as a result, the fun
goal succeeds.

Backtracking

Let’s now talk about backtracking in Prolog. Say we have the following knowledge
base,

/*facts*/
eats(fred,pears).
eats(fred,t_bone_steak).
eats(fred,apples).

/*query*/
?- eats(fred,FoodItem).

FoodItem = pears

FoodItem = t_bone_steak

FoodItem = apples

After the first solution, prolog will ask us if we want other possible solutions.
The mechanism for finding multiple solution is called backtracking.

/*facts and rules*/
hold_party(X):-

birthday(X),
happy(X).

birthday(tom).
birthday(jane).
birthday(helen).

happy(mary).
happy(jane).
happy(helen).

/*query*/

6

?- hold_party(Who).

X = jane ? ;

X = helen

yes

In order to solve the above, Prolog first attempts to find a clause of birthday, it
being the first subgoal of birthday. This binds X to tom. We then attempt the
goal happy(tom). This will fail, since it doesn’t match the above database. As a
result, Prolog backtracks. This means that Prolog goes back to its last choice
point and sees if there is an alternative solution. In this case, this means going
back and attempting to find another clause of birthday. This time we can use
clause two, binding X to jane. This then causes us to try the goal happy(jane).
This time we find clause two of birthday, and bind X to jane, and attempt the
goal happy(jane). This goal matches against clause 2 of our happy database. As
a result, hold_party will succeed with X=jane. Similarly, we found X=helen.
Notice that when prolog succeed the first time, it doesn’t stop but
continue search for other possible solutions.

Prune search space – cut !

Cut, in Prolog, is a goal, written as !, which always succeeds, but cannot be
backtracked past. Further implication: All subgoals to the left of the cut get
pruned. Any other clauses below the cut clause also get pruned.

One canonical cut example, not logic

not(X) :-
call(X), !, fail.

not(_).

Recursion

/*facts and rules*/
parent(john,paul). /* paul is john's parent */

parent(paul,tom). /* tom is paul's parent */

parent(tom,mary). /* mary is tom's parent */

ancestor(X,Y):- parent(X,Y). /* someone is your ancestor if there are your parent */

ancestor(X,Y):- parent(X,Z), /* or somebody is your ancestor if they are the parent */

7

ancestor(Z,Y). /* of someone who is your ancestor */

/*query*/
?- ancestor(john,tom).

yes

The first clause of ancestor looks to see if there exists a clause that could match
the goal parent(john,tom). This fails to match, as a result we try the second
clause of ancestor. We now pose the query parent(john,Z). This results in us
choosing clause one of parent and binding Z=paul. As a result, we now pose the
recursive query ancestor(paul,tom). Applying the ancestor rule again, we first try
the first clause. This means we check for parent(paul,tom). which successfully
matches the second clause of parent. As a result the goal ancestor(paul,tom)
succeeds. This in turn leads to the goal ancestor(john,tom) succeeding and
Prolog responding yes

List

List basics

syntax: [var1, var2, . . . , varn].

We can do pattern matching as we did in Ocaml,

[1,2,3,4] = [A | B] -> A is bound to 1, B is [2, 3, 4]
[1,2,3,4] = [A, B | C] -> A = 1, B = 2, C = [3, 4]

Ok, let’s see what this fact does.

/*fact*/
p([H|T], H, T).

/*query*/
?- p([a,b,c], X, Y).

X=a

Y=[b,c]

yes

?- p([a], X, Y).

8

X=a

Y=[]

yes

?- p([], X, Y).

no

List search

/*facts and rules*/
on(Item,[Item|Rest]).

on(Item,[DisregardHead|Tail]):-
on(Item,Tail).

/*query*/
?- on(apples, [pears, tomatoes, apples, grapes]).

List construction

append([],List,List).
append([Head|Tail],List2,[Head|Result]):-

append(Tail,List2,Result).

?- append([a,b,c],[one,two,three],Result)

Result = [a,b,c,one,two,three]

List member

From the manual: “member(Element, List) succeeds if Element belongs to the
List. This predicate is re-executable on backtracking and can be thus used to
enumerate the elements of List.

?- member(3, [1,2,3,4,5]).

true

9

List permutation

From the manual: “permutation(List1, List2) succeeds if List2 is a permutation
of the elements of List1.”

?- permutation([3,2,1], [1,2,3]).

true

List length

From the manual: “length(List, Length) succeeds if Length is the length of List.”

?- length([1,2,3,4], 4).

yes

?- length([1,2,3,4], Len).
Len = 4
yes

Finite domain solver

• Finds assignments to variables that fulfill constraints
• Variable values are limited to a finite domain (e.g. integers between 0 and

10)

An example of generating a list of length N where each element is a unique
integer between 1..N.

unique_list2(List, N) :-
length(List,N), /*Create a list of length N with no bound values*/
fd_domain(List, 1, N), /*Define all values in List to be between 1 and N*/
fd_all_different(List), /*Define all values in List to be different*/
fd_labeling(List). /*Generate a solution using backtracking*/

FD Arithmetic Constraints

• FdExpr1 #= FdExpr2 constrains FdExpr1 to be equal to FdExpr2.
• FdExpr1 #= FdExpr2 constrains FdExpr1 to be different from FdExpr2.
• FdExpr1 #< FdExpr2 constrains FdExpr1 to be less than FdExpr2.
• . . .

e.g.

?- X #< 5, fd_labeling(X).
X = 0 ?;

10

X = 1 ?;
X = 2 ?;
X = 3 ?;
X = 4

HW4 – Tower solver

• N*N square is filled with numbers 1..N so that values are not repeated in
any row/column.

• Towers have different heights, can you determine the heights if you know
how many can be seen from each position?

• Try it here, https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/towers.html

In your homework, write Prolog code for solving the heights based
on how many can be seen and vice versa

Write two different implementations: One using FD solver and one without.

• Provide comparison of their performance
• Note: Non-FD solver probably won’t work with larger grids. Testing with

5x5 is enough

Write a solver that finds ambiguous rules

• Multiple tower configurations can generated the same edge numbers.

Tips on HW4

• Try to make your solution efficient.
• Don’t use FD solver in your plain solution.
• Use ?- statistics to evaluate performance

11

	CS131, Spring19 – Discussion 1B
	Administrations
	Prolog basics
	Declarative programming
	Prolog overview
	Install Prolog
	How to run prolog code
	Simple facts
	Facts with arguments
	Variables and unification
	Rules
	Backtracking
	Prune search space – cut !
	Recursion
	List

	HW4 – Tower solver

