
CS131, Spring19 – Discussion 1B

Week 3 (04/19/19)

Administrations

1. TA: Wenhao Zhang (wenhaoz@cs.ucla.edu)
2. Office hour:

• Time: 9:30am ~ 11:30am, Monday
• Location: 3rd floor, common area in Eng VI

3. Class Announcements
• All TAs slides are under resources tab on Piazza
• HW2 dues on 04/21 (This Sunday)
• Midterm: Thursday, 05/02.
• Midterm review in next discussion
• Please dont copy & paste code from stackoverflow or other sources.

4. Today’s agenda
• Recap of last week
• More on HW2
• Java intro

Quick recap from last week

• Higher order function && Currying
• Q: Use List.fold_left to write a function which concatenates a list of strings.

– Recall from last week
– let sum = List.fold_left (+) 0;;
– Answer: let f = List.fold_left (ˆ) "";;

• Q: what’s the type of this one?
– let f f = f 1 1;;
– let f = fun f -> f 1 1;;
– ‘let f1 = fun f -> f 1 1;;’

• Grammar recap
– HW2 Grammar

(Expr,
function

| Expr -> [[N Term];
[N Term; N Binop; N Expr]]

| Term -> ...
)

– Left-most Derivation “3” “+” “4”
Expr → Term Binop Expr | Term
Term → Num | Lvalue | Incrop Lvalue | Lvalue Incrop | "(" Expr ")"
Lvalue → "$" Expr

1

Incrop → "++" | "--"
Binop → "+" | "-"
Num → "0" | "1" | ... | "9"
Leftmost derivation always expands the leftmost nonterminal next.
(start) Expr
Expr → Term Binop Expr Term Binop Expr
Term → Num Num Binop Expr
Num → "3" "3" Binop Expr
Binop → "+" "3" "+" Expr
Expr → Term "3" "+" Term
Term → Num "3" "+" Num
Num → "4" "3" "+" "4"
– Frag This is simply a list of terminal symbols. This is equivalent to

a program that you are trying to parse.
– Prefix In the above left most derivation, “3” “+” “4” is a prefix.
– Suffix In the above left most derivation, [] is the suffix since every

terminal in frag has been matched.

More on HW2

Option

Options are are an Ocaml standard type that can be either None (undefined) or
Some x where x can be any value. Options are widely used in Ocaml to represent
undefined values (a little like NULL in C, but in a type and memory safe way).

type `a option =
| None
| Some of `a

(*This expression has the following type*)
(*int option = Some 1*)
Some 1;;

Acceptor:

a function whose argument is a fragment frag. If the fragment is not acceptable,
it returns None; otherwise it returns Some x for some value x.

• Simple Acceptor which accepts all

let accept_all suffix = Some suffix;;

• Acceptor that only accepts suffixes that are not empty

let accept_nonempty = function
| [] -> None
| s -> Some s;;

2

Basic idea is that an acceptor is simply a function, it has no implicit meaning.

Matcher

A curried function with two arguments, 1) an acceptor accept and 2) a fragment
frag. A matcher matches a prefix p of frag such that accept (when passed the
corresponding suffix) accepts the corresponding suffix (i.e., the suffix of frag
that remains after p is removed). If there is such a match, the matcher returns
whatever accept returns; otherwise it returns None.

How does matcher work exactly?

1. find the matching prefix using grammar derivation
2. if no prefix is found: return None.
3. else call acceptor on suffix return whatever acceptor returns.

For example, let’s say we have a fragment ["3", "+", "4", "-"], and
you want to parse it using the given grammar in hw2 specs. Your matcher
finds two possible prefixes, [“3”, “+”, “4”] and [“3”]. This can be easily
checked using Expr->[N Term; N Binop; N Expr] or Expr -> [N Term] in
awkish_grammar. The corresponding suffixes of ["3", "+", "4"] and ["3"]
are ["-"] and[“+”, “4”, “-”]‘:

1) If the acceptor only accepts suffix ["-"], then your matcher found a good
prefix (i.e. ["3", "+", "4"]), and will return whatever the acceptor
returns.

2) If the acceptor only accepts empty suffix, then you run out of options
because the acceptor rejects the two suffixes metioned above. In this
case, your matcher fails to find a matching prefix, and returns
None.

The next task for you is to write a curried func make_parser gram which returns
a parser for the grammar gram. When applied to a fragment frag, the parser
returns an optional parse tree. If frag cannot be parsed entirely (that is, from
beginning to end), the parser returns None.

let test2 =
((make_matcher awkish_grammar accept_all ["9"; "+"; "$"; "1"; "+"])
= Some ["+"]

let test3 =
((make_matcher awkish_grammar accept_empty_suffix ["9"; "+"; "$"; "1"; "+"])
= None)

Let’s write some simple matchers

Q1. Write a matcher that matches empty prefix

(*Solution to Q1*)
let match_empty accept frag = accept frag

3

(*type of this matcher*)
val match_empty : ('a -> 'b) -> 'a -> 'b = <fun>

(*example of using match_empty*)
match_empty accept_all [1;2;3];; (*=> Some [1;2;3]*)

Q2. Single element matcher

This make_match_start function takes in 3 arguments: v : ’a, frag : ’a list,
and accept function. make_matcher pattern returns a matcher for the
pattern This matcher tries to match v to the first element of frag.

(*Solution to Q2*)
let make_match_start v acceptor frag = match frag with
| [] -> None
| f::r -> match f with

| v -> acceptor r;;

(*type of this `matcher function`*)
val make_match_start : 'a -> ('b list -> 'c option) -> 'b list -> 'c option = <fun>

(*example of call make_match_start*)
make_match_start 1 accept_all [1;2;3];; (*=> Some [2;3]*)

(*match_1 is a matcher (curried function) that only matches frags starts with 1*)
let match_1 = make_match_start 1;;

Q3. Append matchers

Suppose we had two matchers, and we wanted to use them both in sequence.

(*Question*)
let append_matchers matcher1 matcher2 accept frag = ?

(*Answer*)
let append_matchers matcher1 matcher2 accept frag =
matcher1 (fun frag1 -> matcher2 accept frag1) frag;;

let matcher_1 = make_match_start 1;;
let matcher_2 = make_match_start 2;;

append_matchers matcher_1 matcher_2 accept_all [1;2;3];; (*=> Some [3]*)

(*Write a sequence of matchers*)
let make_appended_matchers make_a_matcher ls =

let rec mams = function
| [] -> match_empty
| head::tail -> append_matchers (make_a_matcher head) (mams tail)

in mams ls;;

4

(*create a sequence of matchers*)
let accept_empty suffix = match suffix with
| [] -> Some []
| _ -> None;;

make_appended_matchers make_match_start [1;2;3] accept_empty [1;2;3];; (*=> Some []*)

make_appended_matchers make_match_start [1;2;3] accept_empty [1;2;3;4];; (*=> None*)

Q4. Or_matcher

Discuss what his function does

let match_nothing frag accept = None

let rec f make_a_matcher = function
| [] -> match_nothing
| head::tail ->

let head_matcher = make_a_matcher head
and tail_matcher = f make_a_matcher tail
in fun accept frag ->
let ormatch = head_matcher accept frag
in match ormatch with
| None -> tail_matcher frag accept
| _ -> ormatch

f make_match_start [1;2;3] accept_all [1;4;5];; (*=> Some [4;5]*)

f make_match_start [1;2;3] accept_all [2;4;5];; (*=> Some [4;5]*)

Object-oriented programming (OOP)

Overview

• Objects are the first-class citizens.
• Objects encapsulate related methods and fields
• Example languages e.g. Java, C++, C#, Python, PHP, JavaScript, Ruby,

etc

Class

Class is a template for an object. Object is an instance of a class. All objects
created using the same class will have the same methods/fields.

What are the benefits of OOP?

5

• Modularity
– Splitting code into objects can help keep different parts of code

separated
• Information-hiding

– Objects should only interact by using each other’s public methods
• Code reuse

– Objects easy to re-use in other programs
• Pluggability and debugging ease

– You can easily replace a buggy object with a working one if necessary

Alan Kay’s definition of OOP

• Everything is an object
• Objects communicate by sending/receiving messages
• Objects have their own memory
• Every object is an instance of some class
• All objects of a specific type can receive the same messages

Note: Some of these do not apply to all of the modern OOP languages!

Java intro

• We will be using Java 11 for this class.
• We recommend you to use an IDE like Eclipse, Netbeans, IntelliJ.

– This will give you autocomplete, debugging, syntax highlighting and
other features to make your life easier

• Other option would be a text editor (e.g. Emacs, sublime, Vim) + the
terminal
– Compile with: javac fileName.java
– Run with: java fileName

Hello World

/*HelloWorld.java*/

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello, World");
}

}

6

Java files

• MyClass.java
– Code for MyClass

• MyClass.class
– Bytecode for MyClass (Compiled using javac MyClass.java)

• Foo.jar
– Java Archive file; ZIP archive
– Could contain dependent code files or other resources
– In HW3, you are provided a jar file containing the necessary code files

Inheritance

class Shape {
void draw() { /* do nothing */ }

}
class Rectangle extends Shape {

void draw() { /* draw a rectangle */ }
}
class Circle extends Shape {

void draw() { /* draw a circle */ }
}
class Triangle extends Shape {

void draw() { /* draw a triangle */ }
}

Triangle a = new Triangle(); a.draw(); /* draws a triangle */
Shape b = a;
b.draw(); /* draws a triangle */
b = new Circle();
b.draw(); /* draws a circle */

Interface

• Defines what a class must be able to do, not how to do it
• Interface can not be instantiated, must create a class that implements that

interface
• One class can implement multiple interfaces

interface Vehicle {
public int currentSpeed;

7

public void increaseSpeed();
public void decreaseSpeed();
public void turnLeft();
public void turnRight();

}

class Car implements Vehicle {
public void increaseSpeed() {

pressGasPedal();
}
public void decreaseSpeed() {

pressBrakePedal();
}

... rest of the implementations ...
}

Abstract Classes

• Abstract classes are a combination of a class and an interface
– Can’t create an object using an abstract class
– Can define some parts of the class, while leaving other implementations

for children
• Classes can extend only one abstract or normal class

abstract class Shape {
abstract void draw();
void setColor() { /* set color */ }

}

8

	CS131, Spring19 – Discussion 1B
	Administrations
	Quick recap from last week
	More on HW2
	Object-oriented programming (OOP)
	Overview
	Class
	Alan Kay's definition of OOP

	Java intro
	Hello World
	Java files
	Inheritance
	Interface
	Abstract Classes

