
GenSample: A Genetic Algorithm for Oversampling
in Imbalanced Datasets

Vishwa Karia
Center for Smart Health &

Computer Science Department, UCLA
Email: vishwakaria2@ucla.edu

Wenhao Zhang
Center for Smart Health &

Computer Science Department, UCLA
Email: wenhao@ucla.edu

Arash Naeim
Center for Smart Health &

Department of Medicine, UCLA
Email: ANaeim@mednet.ucla.edu

Ramin Ramezani
Center for Smart Health &

Computer Science Department, UCLA
Email: raminr@ucla.edu

Abstract—Imbalanced datasets are ubiquitous. Classification
performance on imbalanced datasets is generally poor for the
minority class as the classifier cannot learn decision boundaries
well. However, in sensitive applications like fraud detection, medi-
cal diagnosis, and spam identification, it is extremely important to
classify the minority instances correctly. In this paper, we present
a novel technique based on genetic algorithms, GenSample, for
oversampling the minority class in imbalanced datasets. Gen-
Sample decides the rate of oversampling a minority example by
taking into account the difficulty in learning that example, along
with the performance improvement achieved by oversampling
it. This technique terminates the oversampling process when the
performance of the classifier begins to deteriorate. Consequently,
it produces synthetic data only as long as a performance boost is
obtained. The algorithm was tested on 9 real-world imbalanced
datasets of varying sizes and imbalance ratios. It achieved the
highest F-Score on 8 out of 9 datasets, confirming its ability
to better handle imbalanced data compared to other existing
methodologies.

Index Terms—Evolutionary computing and genetic algorithms,
Class Imbalanced Problem, Oversampling, SMOTE.

I. INTRODUCTION

Building classifiers for imbalanced datasets is a difficult
task. A dataset is said to be balanced when it has approxi-
mately the same number of samples from all classes. A well-
balanced dataset provides a fair view to the classifier, helping it
learn decision boundaries without any bias. Generally, the goal
of classifiers is to maximize the accuracy of predictions. When
a dataset is imbalanced, labeling new samples as belonging to
the majority class decreases the likelihood of making mistakes
during prediction. For instance, if the minority class makes
up just 1% of the dataset, predicting every data point as
belonging to the majority class will lead to a 99% accuracy.
Consequently, the classification of minority samples is highly
compromised. However, in sensitive applications like fraud de-
tection, medical diagnosis, detection of defects in production,
the minority class with rare instances is of greater interest.
Thus, several methods have been proposed to balance datasets
before feeding them to the classifier. For the scope of this
paper, we restrict our discussion to the binary classification

task only. We will assume the minority class to be positive
and the majority class to be negative.

The techniques used for balancing datasets can be broadly
classified into two categories – Data level and Algorithm level
[4]. Data level techniques focus on oversampling the minority
class or under-sampling the majority class, either randomly or
in a directed manner. Algorithm level techniques aim to alter
the costs of the various classes, adjust the decision threshold
or use ensemble learning. One of the most popular data level
techniques, SMOTE [1], creates new minority examples by
interpolating between minority observations in the original
dataset. An extension of this technique, ADASYN [2], assigns
weights to different minority class examples based on the
difficulty in learning those examples.

In this paper, we present a novel data-level approach based
on Genetic Algorithms [3] that considers both, the difficulty
in learning the features of an example and the performance
improvement caused by oversampling it, during the process
of resampling. The process of oversampling a dataset to
make it balanced can be considered to be analogous to a
population growing and evolving over time. Since genetic
algorithms replicate the process of natural selection and evolu-
tion in computation problems, their application to imbalanced
datasets could be expected to perform well. This expectation
is supported by the findings of this paper which show better
classification results in terms of F1 Score in 8 of the 9
datasets we experimented with. We believe that it is not
necessary to completely balance a dataset for its features to
be understood by a classifier. In fact, adding more artificial
data than necessary for proper classification can sometimes
degrade performance. Thus, our algorithm terminates when it
encounters a decline in the F1 Score, thereby assuring that the
results will not be worse than the original classifier in the case
where they cannot be improved.

The rest of this paper is organized as follows: We introduce
the Genetic oversampling algorithm, GenSample in Section III.
We discuss the algorithm in terms of the selection, crossover
and mutation operations of Genetic Algorithms. In Section

1

ar
X

iv
:1

91
0.

10
80

6v
1 

 [
cs

.L
G

] 
 2

3 
O

ct
 2

01
9



IV, we perform experiments on 9 real-world datasets to
evaluate the performance of GenSample. We compare the
results with 3 benchmark algorithms, the naive Decision Tree,
SMOTE and ADASYN, and show how GenSample shows
better performance in general.

II. RELATED WORK

Traditional ways to handle an imbalance in datasets include
data-level techniques like under-sampling the majority class
or oversampling the minority class, and algorithm-level tech-
niques like cost-sensitive learning and ensemble methods.

A. Undersampling

Random undersampling eliminates some majority class ex-
amples, leading to a better imbalance ratio of the dataset.
The concept of Tomek Links, introduced in [12], was one
of the first systematic procedures for oversampling, focussing
on eliminating the borderline majority examples. Kubat et al.
extend the concept of Tomek Links to remove majority class
samples while leaving the minority class as it is, called ‘One-
sided selection’ [11]. Elhassan T. et al. also combine random
undersampling with Tomek Links to balance datasets [13].
However, there is a tendency of losing important features of
the data during undersampling. Thus, it is not popularly used
as a standalone technique. Instead, it is either coupled with
oversampling or avoided.

B. Oversampling

The simplest oversampling techniques work by duplicating
the minority class entities i.e. by generating new data which
is a replica of an existing data point. The advantage of this
technique is that it is extremely safe. We are only adding the
examples which are valid observations, however, by repeatedly
presenting them to the classifier, we are helping it learn
these rare features better. Chawla et al. proposed a novel
oversampling technique called SMOTE (Synthetic Minority
oversampling Technique) which systematically generates new
minority data along the line joining each minority point and
one of its nearest neighbors [1]. Han et al. extended the idea of
SMOTE to Borderline-SMOTE which focusses on strengthen-
ing the data points near the decision boundary, oversampling
the borderline points the most [14]. ADASYN, presented in
[2] incorporates the concept of adaptively synthesizing new
points depending on the ratio of the majority class samples
in the k-neighborhood of a point. This idea of distinguishing
between different types of examples was also proposed in [5].

C. Algorithm-Level Approaches

Cost-Sensitive Learning tackles the imbalance problem by
penalizing the misclassification of an example based on its
class. This allows us to place more emphasis on correctly
identifying the instances of the minority class by giving that
class a higher weight. Ensemble methods have also proven to
be promising for handling imbalanced datasets. For instance,
SMOTEBoost oversamples the minority class by leveraging
SMOTE at each step of boosting while learning the weak
classifier [17].

The use of metaheuristic algorithms for handling imbalance
in datasets has been rare. Yu et al. presented ACOSampling,
which uses Ant Colony Optimization for undersampling in
DNA microarray data [16]. A recent algorithm, GASMOTE,
proposed by Jiang et al. in [15], augments SMOTE with a
genetic algorithm to perform oversampling. In this method, an
individual in the population is a sequence of sampling rates
for all minority instances. These individuals are evolved until
the optimal oversampling rate for each example is reached.

III. GENSAMPLE ALGORITHM

As described in [4], minority class examples can be divided
into four categories: safe, borderline, rare and outliers. Safe ex-
amples are located in homogenous regions of similar examples
and are easier to classify. Borderline examples are the ones
close to the decision boundary, causing more difficulty during
classification. Rare examples are the outlying pairs or triplets
of minority class points corresponding to the under-represented
minority regions, making them more fit for resampling than the
former two types. Outliers, as the name suggests, are the scarce
minority examples scattered in regions of majority, represent-
ing either noise or a valid, extremely rare subconcept. There
are contrasting opinions on how to handle outliers, whether to
discard or resample them. However, many studies on medical
problems have shown that these outliers are authentic, under-
represented minority samples. Hence, GenSample considers
these points to be the most difficult to learn, oversampling
them the most.

The main idea of the GenSample algorithm is to iteratively
learn which minority samples are best suited for resampling.
We set aside one-third of the training data as a validation
dataset. The algorithm first generates the initial population
which consists of all the minority examples from the training
data. It then uses the fitness function described in section III-B
to pick the fittest individual of the population as the first
parent for crossover. The second parent is randomly selected
from the k-nearest minority neighbors of the first parent. An
interpolation between the two parents like [1] produces two
children, each of which is evaluated for its fitness. The fitter
of the two children replaces the least fit individual of the
population. Since each minority example is important to our
classifier, we eliminate the least fit individual only from the
population, not from the original dataset used for classification.
This can be interpreted as considering that individual unfit for
reproduction but fit enough to survive. Thus, we can view
the population as the set of individuals who participate in
crossover. During evaluation, we fit a Decision Tree classifier
with the entire training data, not just the population. The fitted
model is tested on the validation dataset. Each of the above-
mentioned steps is elaborated in the following sections and
formally presented in Algorithm 1.

A. Initial Population

As mentioned before, the initial population consists of all
the minority class samples as individuals. To evaluate the
dataset during resampling, we use the F1 score as an evaluation

2



Algorithm 1 GenSample Algorithm
1: procedure EVALUATE DATASET(Xtrain, Xtest, ytrain, ytest)
2: Fit a Decision tree Classifier on Xtrain

3: return f score(ytest, ytrain)
4: end procedure
5: procedure EVALUATE POPULATION FITNESS(population, Xtrain, ∆Fscore, beta)
6: for individual in population do
7: Calculate fitness(individual)
8: end for
9: end procedure

10: procedure GENSAMPLE(Xtrain, beta)
11: Initialize population ← {x|x ∈ Xmin}
12: Initialize new samples ← 0
13: target new samples = |X| − 2 · |Xmin| . Balances the imbalance ratio
14: EVALUATE POPULATION FITNESS(population,Xtrain, 0, beta)
15: while new samples < target new samples and curr eval measure ≤ prev eval measure do
16: explore ← random([True, False], p = [0.15, 0.85])
17: if explore = False then
18: fittest1 ← population.fittest . Selection
19: else
20: fittest1 ← Random Individual in the population
21: end if
22: fittest2 ← Random minority neighbor from k-nearest neighbors of fittest1
23: Generate child1, child2 . Crossover
24: Add child1 to dataset
25: eval measure1 ← EVALUATE DATASET
26: Remove child1
27: Add child2 to dataset
28: eval measure2 ← EVALUATE DATASET
29: Remove child2
30: fitter child ← (eval measure1 ≥ eval measure2) ? child1 : child2
31: Replace least fit point in population with fitter child
32: Add fitter child to dataset
33: end while
34: end procedure

metric because it takes into consideration both the precision
and recall, giving us a single metric to gauge our performance.

B. Fitness Function

The fitness of an individual depends on the type of minority
class example it is, i.e. safe, borderline, rare or outlier, as
well as the amount of performance improvement achieved
by oversampling it. The more challenging it is to classify an
example, the more it should be resampled. Consequently, its
fitness value should be high. The fitness function interpolates
between the two above measures as follows:

fitness(x) = beta×minority label weight

+(1− beta)×∆Fscore

where beta is a constant such that 0 < beta < 1.
minority label weight depends on the category of the mi-
nority class and is calculated using the number of majority
class samples in the k-neighborhood of x. ∆Fscore is the
change in F1 score produced by resampling x.

The minority label weight is assigned as follows:
If 0.75 ≤ majority neighbors ratio ≤ 1.0
minority label weight ← random.uniform(0.8, 1.0)

Else If 0.5 ≤ majority neighbors ratio < 0.75
minority label weight ← random.uniform(0.6, 0.8)

Else If 0.25 ≤ majority neighbors ratio < 1.0
minority label weight ← random.uniform(0.4, 0.6)

Else
minority label weight ← random.uniform(0.2, 0.4)
Here, majority neighbors ratio is the ratio of majority

samples in the k-neighborhood of the point under consid-
eration. The minority label weights used above are based
on empirical results. Randomization ensures that samples
belonging to the same category do not end up with the same
fitness value.

C. Selection

After calculating the fitness of all the individuals in the
population, the one with the highest fitness is selected as

3



the first parent for crossover. The second parent is randomly
picked from the k nearest minority neighbors of the first
parent, where k can be selected by cross-validation.

D. Crossover

The crossover mechanism generates children by interpolat-
ing between the parents, like [1]. If we draw a line joining the
two parents, the newly generated sample will lie somewhere
on the line segment between the parent points.

child = parent1 + (parent2 − parent1)× λ

where 0 < λ < 1.
However, if the fittest individual is an outlier, its nearest

neighbors are going to be very far from it. When we randomly
select a point along the line, we might not generate a point
close to the outlier at all. To ensure that this does not happen,
we produce two children, each one closer to one of the parents:

child1 = fittest1 + (fittest2 − fittest1)× λ
child2 = fittest1 + (fittest2 − fittest1)× (1− λ)

Here, 0 < λ < 1. Hence, each child will be closer to one
parent than the other.

The fitness of the children is evaluated by adding them to the
dataset one after the other. We then observe which child causes
a greater performance improvement, thereby the fitter child
replaces the least fit individual in the population. However,
the least fit individual is not removed from the dataset because
it could contain important information. It is only considered
unfit for reproduction.

E. Mutation

The aim of mutation in a genetic algorithm is to maintain
diversity in the population and ensure that the optimization
does not get stuck in a local maximum. We use the explore-
exploit trade-off of machine learning to prevent premature
convergence. The selection function exploits its current path
by choosing the fittest individual in the population most of the
time. But, with a small probability, it might choose to explore
by picking a random individual from the population as the first
parent. This ensures that a possible promising parent with a
low fitness value might be given a chance to increase its fitness.
It will also ensure that the same individual will not be picked
an indefinite number of times as the parent.

F. Termination

The above-mentioned steps are repeated until one of the
following two terminating conditions are met:

• The desired imbalance ratio is reached
• Adding a new sample caused a degradation in perfor-

mance
The second condition ensures that we do not add samples
beyond what is needed for classification. Oversampling more
than necessary can lead to ambiguities in the dataset, making it
harder for the classifier to find the decision boundary. Hence,
we resample the minority class only as much as needed.

IV. EXPERIMENTS

We evaluated the GenSample algorithm on 9 datasets with
different imbalance ratios, sizes as well as the number and
types of features. First, the parameter settings used for the
experiments are described. Next, we describe the datasets
used and the modifications made to them for our binary
classification problem. A discussion of the metrics used for
evaluation is presented next, and finally, the results of the
experiments are put forth.

A. Experimental Setup

Formally described in Algorithm 1, the GenSample algo-
rithm begins by computing the fitness of each individual in the
original population. The relative importance of the minority
class type and the performance improvement obtained by
resampling it are both controlled by the parameter beta of the
fitness function. Empirically, the value of beta = 0.75 works
the best, though it can also be calculated by cross-validation.
We chose not to use cross-validation to reduce the complexity
of the algorithm. The value of k for kNN is set to be 5, though
k=7 also produces good results in many cases.

The GenSample algorithm is compared with the naive
Decision Tree (C4.5), SMOTE + Decision Tree and ADASYN
+ Decision Tree algorithms. We take an average of 100 runs for
all the algorithms to obtain stable results. Again, the value of
k=5 is used for both SMOTE and ADASYN. We oversample
the minority class for both the algorithms until the number
of minority samples becomes equal to that of the majority
samples.

B. Datasets

We tested the algorithm on 9 datasets commonly used
in the literature for benchmarking. For each experiment, we
randomly divide the data into 50% training and 50% testing
datasets. Their attributes are summarized in Table I. Most
of these datasets are publicly available on the UCI Machine
Learning Repository [6]. We made a few modifications to
these datasets for the binary classification problem similar to
other literary experimental setups for such problems. They are
described below:

1) Ionosphere Dataset: This dataset [6] consists of radar
data collected by a system in Goose Bay, Labrador with 2
classes and 34 features. There are 225 ‘good radar’ instances
and 126 ‘bad radar’ instances. Thus, we choose ‘good radar’
as the majority class and ‘bad radar’ as the minority class.

2) Heart Dataset: The Heart Dataset [6] is a binary dataset
that predicts the presence of heart diseases in patients using
13 attributes like age, sex and blood sugar. The presence of
heart disease is rare and constitutes about one-third of the data
points.

3) Iris Dataset: This is a 3 class dataset [6] which uses 4
features to classify an iris plant into one of the categories from
‘Iris-versicolor’, ‘Iris-setosa and ‘Iris-virginica’. Each of these
classes have 50 samples each. We choose ‘Iris-virginica’ as
the minority class and collapse the other two into the majority

4



TABLE I
SUMMARY OF DATASET CHARACTERISTICS

Dataset Name Total Datapoints Minority Datapoints Majority Datapoints Number of Features Imbalance Ratio
Ionosphere 351 126 225 34 1.8

Heart 294 106 188 13 1.8
Iris 150 50 100 4 2.0

Parkinson 195 48 147 22 3.1
Blood Transfusion 748 178 570 4 3.2

Vehicle 846 199 647 18 3.3
CMC 1473 333 1140 9 3.4
Yeast 1484 244 1240 8 5.1
PC1 1109 77 1032 21 13.4

class. Thus, we get a skewed dataset with 50 minority and 100
majority samples.

4) Parkinson Dataset: This dataset [9] uses 22 attributes to
differentiate people with Parkinson’s Disease (PD) from those
without. There are 48 positive examples of people diagnosed
with PD, hence that is chosen as the minority class. The
majority class has 147 examples, resulting in an imbalance
ratio of 3.1.

5) Blood Transfusion Dataset: This dataset [7] presents
blood donation statistics where each data point represents an
individual. The data points are divided into two classes based
on whether the individual donated blood in March 2007 using
4 features. We select ‘yes’ as the minority class with 178 data
points and ‘no’ as the majority class with 570 data points.

6) Vehicle Dataset: This dataset [6] uses 2D silhouettes
of objects in the form of an image to classify the kind of 3D
object it is: a double-decker bus, Chevrolet van, Saab 9000 and
an Opel Manta 400. We collapse the bus, Saab, and Opel into
the negative class and use the van as the positive class. This
results in 199 positive examples and 647 negative examples,
giving an imbalance ratio of 3.3.

7) CMC Dataset: This dataset [6] tries to predict the cur-
rent contraceptive method choice of women from the following
3 categories: 1: No-use, 2: Long-term, 3: Short-term. It has a
total of 1473 examples with 9 features. ‘Long-term’ is selected
as the minority class and has 333 samples. The other 2 classes
are combined into the majority class with 1140 samples.

8) Yeast Dataset: The Yeast Dataset [6] classifies the
localization site of protein into one of ‘MIT’, ‘CYT’, ‘NUC’,
‘ME3’, ‘ME2’, ‘ME1’, ‘EXC’, ‘VAC’, ‘POX’, ‘ERL’ classes.
We choose ‘MIT’ as the minority class with 244 data points
and the rest are combined into the majority class with 1240
data points. The classification is done using 8 features.

9) PC1 Dataset: It is one of the NASA Metrics Data
Program defect data sets [8]. It is highly skewed with 1032
majority points and only 77 minority points, leading to an
imbalance ratio of 13.4. Each example is represented by 21
features.

C. Evaluation Metrics

Overall Accuracy (OA) is one of the most common metrics
for classification tasks in Machine Learning. It is defined as the

ratio of the number of correct predictions to the total number
of predictions.

Accuracy =
Number of correct predictions
Total number of predictions

In terms of positives and negatives, we can rewrite the defini-
tion as:

Accuracy =
TP + TN

TP + TN + FP + FN

However, when the dataset is imbalanced, accuracy is not an
effective measure of a classifier’s performance. Suppose we
have 100 data points; 95 of them belong to one class, and
the rest 5 to another. The classifier, having seen so many
examples of the majority class, tends to predict all the samples
as belonging to the majority class. It will achieve a 95%
accuracy in this case but will have a terrible performance
for the minority class. Since the rare examples are of greater
interest in most applications, the high accuracy rate will not
be indicative of the class-wise performance of the classifier.
This phenomenon, also known as the ‘Accuracy Paradox’, mo-
tivates the use of the following additional metrics to evaluate
classifiers. Nonetheless, we report the overall accuracy of the
classifiers to examine the effect of oversampling on it.

1) Precision: Precision is defined as the number of samples
that are actually positive out of the ones identified as positive
by the classifier. Precision helps us examine how accurate the
claims of our classifier on the positive class are.

Precision =
TP

TP + FP

2) Recall: Recall can be defined as the number of samples
correctly identified as positive among the true positive ones.
It is a very important metric in sensitive applications where it
would be risky to not identify the rare instances. To illustrate,
if the minority class corresponds to the presence of tumors
in patients, we would not want to risk a patient’s life by not
diagnosing their tumor when it exists.

Recall =
TP

TP + FN

3) F1 Score: F1 Score is the harmonic mean of Precision
and Recall. Since the use of a harmonic mean instead of
an average punishes extremities in the precision and recall

5



TABLE II
EXPERIMENTAL RESULTS AND PERFORMANCE COMPARISONS 1

Dataset Algorithm Precision Recall F1 Score AUC Accuracy Geometric Mean

Ionosphere

Decision Tree 0.82 0.80 0.81 0.85 0.87 0.85
SMOTE 0.80 0.80 0.80 0.85 0.86 0.85

ADASYN 0.79 0.81 0.80 0.85 0.86 0.84
GenSample 0.82 0.82 0.82 0.86 0.87 0.86

Heart

Decision Tree 0.64 0.66 0.65 0.72 0.74 0.72
SMOTE 0.64 0.65 0.64 0.72 0.74 0.72

ADASYN 0.65 0.66 0.65 0.72 0.74 0.72
GenSample 0.66 0.66 0.66 0.73 0.75 0.73

Iris

Decision Tree 0.92 0.91 0.91 0.93 0.94 0.93
SMOTE 0.92 0.91 0.91 0.94 0.94 0.94

ADASYN 0.92 0.91 0.91 0.94 0.94 0.93
GenSample 0.93 0.93 0.92 0.94 0.95 0.94

Parkinson

Decision Tree 0.65 0.65 0.64 0.77 0.83 0.76
SMOTE 0.64 0.69 0.66 0.78 0.82 0.77

ADASYN 0.62 0.68 0.64 0.77 0.82 0.76
GenSample 0.66 0.69 0.66 0.78 0.83 0.77

Blood Transfusion

Decision Tree 0.38 0.32 0.34 0.58 0.71 0.52
SMOTE 0.35 0.42 0.38 0.59 0.56 0.56

ADASYN 0.34 0.44 0.38 0.59 0.66 0.57
GenSample 0.38 0.32 0.34 0.58 0.72 0.52

Vehicle

Decision Tree 0.83 0.84 0.83 0.89 0.92 0.89
SMOTE 0.82 0.85 0.84 0.90 0.92 0.89

ADASYN 0.82 0.86 0.84 0.90 0.92 0.90
GenSample 0.84 0.84 0.84 0.90 0.93 0.90

CMC

Decision Tree 0.82 0.78 0.80 0.59 0.70 0.55
SMOTE 0.82 0.73 0.77 0.59 0.67 0.57

ADASYN 0.81 0.72 0.76 0.58 0.66 0.56
GenSample 0.81 0.79 0.80 0.59 0.70 0.55

Yeast

Decision Tree 0.46 0.50 0.48 0.69 0.82 0.66
SMOTE 0.43 0.53 0.47 0.70 0.80 0.68

ADASYN 0.41 0.54 0.46 0.69 0.79 0.67
GenSample 0.47 0.50 0.48 0.69 0.82 0.66

PC1

Decision Tree 0.32 0.34 0.33 0.64 0.90 0.56
SMOTE 0.27 0.40 0.32 0.66 0.88 0.61

ADASYN 0.26 0.40 0.32 0.66 0.88 0.60
GenSample 0.33 0.35 0.34 0.65 0.91 0.57

Winning Times

Decision Tree 3 1 2 1 4 0
SMOTE 1 2 3 7 0 5

ADASYN 0 5 2 4 0 2
GenSample 8 5 8 6 9 5

values, F1 Score is an excellent metric for creating a balanced
classification model.

F1 Score =
2 · Precision ·Recall
Precision+Recall

4) Geometric Mean: The geometric Mean of the accuracies
of the positive and negative classes is more effective at
evaluating classifiers which are dealing with imbalanced data.
It can be calculated as follows:

G mean =
√

Positive Accuracy× Negative Accuracy

The Area Under ROC Curve (or AUC) is another metric
for evaluating classifiers. However, as demonstrated in [10],
when the dataset is imbalanced, the AUC does not do a very
good job of capturing the relative performance of two models.
Hence, we chose not to report it.

D. Experimental Results and Discussion

Table II presents the results of evaluating GenSample and
the other benchmark algorithms- naive decision tree, SMOTE
+ decision tree and ADASYN + decision tree, on the 9 datasets

mentioned previously. The best performance metric for each
algorithm is highlighted in the table. In the end, the number of
times each algorithm wins in performance over all the datasets
is tabulated for ease of comparison similar to [2].

The first conclusion we can draw from the table is that the
overall accuracy is always better with GenSample. This is an
important result because it shows that our algorithm tries not to
compromise on the accuracy of the majority class to improve
that of the minority. The F1 Score shows an improvement in all
the datasets except for Blood Transfusion. Since GenSample
terminates when the performance starts decreasing, we can
also observe that even when the F1 Score is not the best of the
4 algorithms, it is not less than the naive Decision tree. Thus,
our algorithm will at least ensure that performance does not
degrade when it cannot be improved. This is not guaranteed
by SMOTE and ADASYN. This result can be better visualized
in Figure 1.

The winning times in Table II also show that GenSample is
generally high on precision. It has better performance in terms
of precision in 8 out of the 9 datasets with a minimal number

6



Fig. 1. Comparison of F1 Score on all datasets

of ties. Even when the precision value is not the highest,
it is only slightly less than the best performer. GenSample
also achieves good results in terms of recall and geometric
mean, doing better half of the time. Similar to F1 Score, the
performance is never worse than the decision tree.

V. CONCLUSION AND FUTURE WORK

This paper presents GenSample, a genetic algorithm for
handling imbalance in datasets. This algorithm generates syn-
thetic minority data points based on the difficulty in learning
a sample point and the performance improvement achieved by
oversampling it. The algorithm terminates when the desired
imbalanced ratio is reached or a performance deterioration was
caused by adding a synthetic data point to the dataset. Due to
the early termination condition, the algorithm always ensures
that the classification performance does not degrade when it
cannot be further improved. We investigate the behavior of
GenSample by evaluating it on 9 commonly used imbalanced
datasets with 6 different metrics. We observe that for 8 of the 9
datasets, the F1 Score and precision are better for Gensample,
and the overall accuracy of GenSample is always the highest.
Moreover, the recall and geometric mean have the highest
value more than 50% of the time.

In the future, we will be examining other heuristics which
can lead to better results. A promising avenue of research is
to investigate the effectiveness of GenSample by combining it
with ensemble methods. The data-level techniques have shown
considerable improvement when augmented with boosting, so
a similar enhancement can be expected from the combination
of GenSample and boosting.

According to the ‘No Free Lunch Theorem’ [18], no single
model can work the best for every problem. Thus, although
the results for GenSample are not the best for every dataset
and metric, they definitely indicate that GenSample holds
promising results in the field of imbalanced learning.

REFERENCES

[1] N. Chawla, K. Bowyer, L. Hall, W. Kegelmeyer, “SMOTE: Synthetic
Minority oversampling Technique”, Journal of Artificial Intelligence
Research, vol. 16, pp. 321–357, 2002.

[2] H. He, Y. Bai, E. Garcia, S. Li, “ADASYN: Adaptive Synthetic
Sampling Approach for Imbalanced Learning”, In Proceedings of the
International Joint Conference on Neural Networks, pp. 1322-1328,
2008.

[3] Melanie Mitchell, “An Introduction to Genetic Algorithms”, Cam-
bridge, MA: MIT Press, 1996.

[4] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbal-
anced datasets: A review,” GESTS International Transactions on
Computer Science and Engineering, vol. 30, no. 1, pp. 25-36, 2006.

[5] K. Napierala, J. Stefanowski, “Types of minority class examples and
their influence on learning classifiers from imbalanced data”, Journal
of Intelligent Information Systems, vol. 46, no. 3, pp. 563–597, 2016.

[6] D. Dua, C. Graff, “UCI Machine Learning Repository”, University
of California, Irvine, School of Information and Computer Sciences,
2017.

[7] I. Yeh, K. Yang, T. Ting, “Knowledge discovery on RFM model using
Bernoulli sequence”, Expert Systems with Applications, 2008.

[8] J. Shirabad, T. Menzies, “The PROMISE Repository of Software
Engineering Databases”, School of Information Technology and En-
gineering, University of Ottawa, Canada, 2005.

[9] M. Little, P. Mcsharry, S. Roberts, D. Costello, I. Moroz, “Exploit-
ing Nonlinear Recurrence and Fractal Scaling Properties for Voice
Disorder Detection”, BioMedical Engineering OnLine, 2007.

[10] A. Swalin, “Choosing the Right Metric for Evaluating Machine
Learning Models- Part 2”, https://medium.com/usf-msds/choosing-
the-right-metric-for-evaluating-machine-learning-models-part-2-
86d5649a5428, 2018.

[11] M. Kubat, S. Matwin, “Addressing the curse of Imbalanced Training
Sets: One Sided Selection”, In Proceedings of the Fourteenth Inter-
national Conference on Machine Learning, pp. 179–186, 1997.

[12] I. Tomek: “An experiment with the edited nearest-neighbor rule”,
IEEE Transactions on systems, Man, and Cybernetics, vol. 6, 1976.

[13] T. Elhassan, M. Aljurf, F. Al-Mohanna, and M. Shoukri, “Classi-
fication of Imbalance Data using Tomek Link (T-Link) Combined
with Random Under-sampling (RUS) as a Data Reduction Method”,
Journal of Informatics and Data Mining, 2016.

[14] H. Han, W. Wang, and B. Mao, “Borderline-SMOTE: A New over-
sampling Method in Imbalanced Data Sets Learning”, In: Interna-
tional conference on intelligent computing. Springer, pp. 878–887,
2005.

[15] K. Jiang, J. Lu, and K. Xia, “A Novel Algorithm for Imbalance
Data Classification Based on Genetic Algorithm Improved SMOTE”,
Arabian Journal for Science and Engineering, vol. 41, no. 8, pp.
3255–3266, 2016.

[16] H. Yu, J. Ni, J. Zhao, “ACOSampling: An ant Colony Optimization-
based undersampling method for classifying imbalanced DNA mi-
croarray data”, Neurocomputing vol. 101, pp. 309–318, 2012.

[17] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “SMOTEBoost:
Improving prediction of the minority class in boosting,” in Proc. 7th
Eur. Conf. Principles Pract. Knowl. Discov. Databases, Croatia, pp.
107–119, 2003.

[18] D. Wolpert and W. Macready, “No Free Lunch Theorems for Opti-
mization”, IEEE Transactions on Evolutionary Computation Vol. 1,
No. 1, 1997.

7


	I Introduction
	II Related Work
	II-A Undersampling
	II-B Oversampling
	II-C Algorithm-Level Approaches

	III GenSample Algorithm
	III-A Initial Population
	III-B Fitness Function
	III-C Selection
	III-D Crossover
	III-E Mutation
	III-F Termination

	IV Experiments
	IV-A Experimental Setup
	IV-B Datasets
	IV-B1 Ionosphere Dataset
	IV-B2 Heart Dataset
	IV-B3 Iris Dataset
	IV-B4 Parkinson Dataset
	IV-B5 Blood Transfusion Dataset
	IV-B6 Vehicle Dataset
	IV-B7 CMC Dataset
	IV-B8 Yeast Dataset
	IV-B9 PC1 Dataset

	IV-C Evaluation Metrics
	IV-C1 Precision
	IV-C2 Recall
	IV-C3 F1 Score
	IV-C4 Geometric Mean

	IV-D Experimental Results and Discussion

	V Conclusion and Future Work
	References

